Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

Beams - Fixed at One End and Supported at the Other - Continuous and Point Loads

Supporting loads, moments and deflections.

Beam Fixed at One End and Supported at the Other - Single Point Load

Beam fixed at one end and supported at the other - single point load Bending Moment

MA = - F a b (L + b) / (2 L2)                               (1a)

where

MA = moment at the fixed end (Nm, lbf ft)

F = load (N, lbf)

MF = Rb b                               (1b)

where

MF = moment at point of load F (Nm, lbf ft)

Rb = support load at support B (N, lbf)

Deflection

δF = F a3 b2 (3 L + b) / (12 L3 E I)                                  (1c)

where

δF = deflection (m, ft)

E = Modulus of Elasticity (Pa (N/m2), N/mm2, psi)

I = Area Moment of Inertia (m4, mm4, in4)

Support Reactions

RA = F b (3 L2- b2) / (2 L3)                                 (1d)

where

RA = support force in A (N, lbf)

RB = F a2 (b + 2 L) / (2 L3)                                 (1f)

where

RB = support force in B  (N, lbf)

Beam Fixed at One End and Supported at the Other - Continuous Load

Beam fixed at one end and supported at the other - continous load Bending Moment

MA = - q L2 / 8                                    (2a)

where

MA = moment at the fixed end (Nm, lbf ft)

q = continuous load (N/m, lbf/ft)

M1 = 9 q L2 / 128                                       (2b)

where

M1 = maximum moment at x = 0.625 L  (Nm, lbf ft)

Deflection

δmax = q L4 / (185 E I)                                  (2c)

where

δmax = max deflection at x = 0.579 L (m, ft)

δ1/2 = q L4 / (192 E I)                                  (2d)

where

δ1/2 = deflection at x = L / 2   (m, ft)

Support Reactions

RA = 5 q L / 8                            (2e)

RB = 3 q L / 8                            (2f)

Beam Fixed at One End and Supported at the Other - Continuous Declining Load

Beam fixed at one end and supported at the other - continous declining load Bending Moment

MA = - q L2 / 15                               (3a)

where

MA = moment at the fixed end (Nm, lbf ft)

q = continuous declining load (N/m, lbf/ft)

M1 = q L2 / 33.6                              (3b)

where

M1 = maximum moment at x = 0.553 L (Nm, lbf ft)

Deflection

δmax = q L4 / (419 E I)                                  (3c)

where

δmax = max deflection at x = 0.553 L   (m, ft)

δ1/2 = q L4 / (427 E I)                                  (3d)

where

δ1/2 = deflection at x = L / 2   (m, ft)

Support Reactions

RA = 2 q L / 5                            (3e)

RB = q L / 10                            (3f)

Beam Fixed at One End and Supported at the Other - Moment at Supported End

Beam fixed at one end and supported at the other - moment at the supported end Bending Moment

MA = -MB / 2                               (4a)

where

MA = moment at the fixed end (Nm, lbf ft)

Deflection

δmax = MB L2 / (27 E I)                                  (4b)

where

δmax = max deflection at x = 2/3 L   (m, ft)

Support Reactions

RA = 3 MB / (2 L)                                 (4c)

RB = - 3 MB / (2 L)                                (4d)

3D Engineering ToolBox - draw and model technical applications! 2D Engineering ToolBox - create and share online diagram drawing templates! Engineering ToolBox Apps - mobile online and offline engineering applications!

Unit Converter


















































9.4.10

.
Cookie Settings